Abstract

In this paper, we propose and numerically study a nonlinear, asymmetric, passive metamaterial that achieves giant non-reciprocity with (i) broadband frequency operation and (ii) robust signal integrity. Previous studies have shown that nonlinearity and geometric asymmetry are necessary to break reciprocity passively. Herein, we employ strongly nonlinear coupling, triangle-shaped asymmetric cell topology, and spatial periodicity to break reciprocity with minimal frequency distortion. To investigate the nonlinear band structure of this system, we propose a new representation, namely a wavenumber–frequency–amplitude band structure, where amplitude-dependent dispersion is quantitatively computed and analyzed. Additionally, we observe and document the new nonlinear phenomenon of time-delayed wave transmission, whereby wave propagation in one direction is initially impeded and resumes only after a duration delay. Based on numerical evidence, we construct a nonlinear reduced-order model (ROM) to further study this phenomenon and show that it is caused by energy accumulation, instability, and a transition between distinct branches of certain nonlinear normal modes of the ROM. The implications and possible practical applications of our findings are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.