Abstract
The paper presents an adaptive morphological filter developed using multiscale mathematical morphology (MM) to reject broadband noise from ECG signals without affecting the feature waveforms. As a pre-processing procedure, the adaptive morphological filter cleans an ECG signal to prepare it for further analysis. The noiseless ECG signal is embedded within a two-dimensional phase space to form a binary image and the identification of the feature waveforms is carried out based on the information presented by the image. The classification of the feature waveforms is implemented by an adaptive clustering technique according to the geometric information represented by the image in the phase space. Simulation studies on ECG records from the MIT-BIH and BIDMC databases have demonstrated the effectiveness and accuracy of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.