Abstract

A new type of bismuth doped Ba(2)B(5)O(9)Cl crystal is reported to exhibit broadband near infrared (NIR) photoluminescence at room temperature, which has been identified here originating from elementary bismuth atom. Rietveld refining, static and dynamic spectroscopic properties reveal two types of Bi(0) centers in the doped compound due to the successful substitution for two different nine-coordinated barium lattice sites. These centers can be created only in a reducing condition, and when treated in air and N(2)/H(2) flow in turn, they can be removed and restored reversely. As the dwelling time is prolonged in N(2)/H(2) at high temperature, conversion from Bi(2+) to Bi(0), as reflected by changes of their relative emission intensities, is witnessed in the crystal of Ba(2)B(5)O(9)Cl:Bi. The lifetime of the NIR luminescence was observed in a magnitude of ~30 μs, rather different from bismuth doped either glasses or crystals reported previously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call