Abstract
With the advent of monochromatic and quasi-monochromatic x-ray sources, we explore their potential with computational and experimental studies on propagation through a combination of low and high-Z (atomic number) media for applications to imaging and detection. The multi-purpose code GEANT4 and a new code PHOTX are employed in numerical simulations, and a variety of x-ray sources are considered: conventional broadband devices with well-known spectra, quasi-monochromatic laser driven sources, and monochromatic synchrotron x-rays. Phantom samples consisting of layers of low-Z and high-Z material are utilized, with atomic-molecular species ranging from H2O to gold. Differential and total attenuation of x-ray fluxes from the different x-ray sources are illustrated through simulated x-ray images. Main conclusions of this study are: I. It is shown that a 65 keV Gaussian quasi-monochromatic source is capable of better contrast with less radiation exposure than a common 120 kV broadband simulator. II. A quantitative measure is defined and computed as a metric to compare the efficacy of any two x-ray sources, as a function of concentration of high-Z moieties in predominantly low-Z environment and depth of penetration. III. Characteristic spectral features of , fluorescent emission and Compton scattering indicate pathways for accelerating x-ray photoexcitation and absorption; in particular, we model the tungsten at 59 keV alongside experimental measurements at the European synchrotron research facility to search for the signature of induced resonance fluorescence. The present study should contribute to the understanding of diagnostic potential of new x-ray sources under development, as well as the underlying fundamental physical processes and features for biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.