Abstract

An important bottleneck in the design, operation, and exploitation of mechatronic powertrains is the lack of accurate knowledge of broadband external loading. This is caused by the intrusive nature of regular torque measurements. This paper proposes a novel nonintrusive approach to obtain torsional load information on mechatronic powertrains. Online coupled state/input estimation is performed through an augmented nonlinear Kalman filter. This estimation approach exploits general lumped-parameter physics-based models in order to create a widely applicable framework. This paper considers both extended (EKF) and unscented Kalman filtering approaches. Contrary to previous works, no considerable difference in accuracy is obtained from experiments, with a considerably lower computational load for the EKF. This paper reveals the benefits of including rotational acceleration measurements from a theoretical perspective, which is demonstrated through the experimental validation. This drastically increases the broadband accuracy. The result of this paper is an accurate and noninvasive virtual torque sensor with a sufficiently broad bandwidth for use in condition monitoring, control, and future design optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.