Abstract

We show the quasi-elastic light scattering (QELS) spectra of two groups of relaxors: the first group includes relaxors that exhibit glasslike low-temperature thermal conductivity and heat capacity, namely, Pb(Mg1/3Nb2/3)O3 (PMN), (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–xPT), Pb(Zr1/3Nb2/3)O3 (PZN), and (Na1/2Bi1/2)TiO3 (NBT). The other group consists of relaxors exhibiting a normal (crystal) temperature dependence of the thermal conductivity and heat capacity, namely, K1−xLixTaO3 (KLT) and KTa1−xNbxO3 (KTN). The crystals of the first group yielded self-similar (power-law) QELS spectra, indicating the existence of fractal networks/clusters of polar nanoregions, while those of the second group did not show any self-similarity in the QELS spectra. These results imply that the glasslike low-temperature thermal conductivity and heat capacity in relaxors can be attributed to the vibrational modes specific to fractal networks/clusters formed by polar nanoregions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call