Abstract

Vibrational motions in electronically excited states can be observed either by time and frequency resolved infrared absorption or by off resonant stimulated Raman techniques. Multipoint correlation function expressions are derived for both signals. Three representations which suggest different simulation protocols for the signals are developed. These are based on the forward and the backward propagation of the wavefunction, sum over state expansion using an effective vibrational Hamiltonian or a semiclassical treatment of a bath. We show that the effective temporal (Δt) and spectral (Δω) resolution of the techniques is not controlled solely by experimental knobs but also depends on the system dynamics being probed. The Fourier uncertainty ΔωΔt > 1 is never violated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.