Abstract

This article presents a novel broadband dual-polarized filtering patch antenna array using low-temperature cofired ceramic (LTCC) process for 5G millimeter-wave (mmW) applications. The filtering antenna element is implemented using a ± 45° polarized patch antenna fed by two pairs of differential L-type probes. An additional square ring and open strips are connected to each probe, resulting in radiation nulls and realizing the lower/upper stopband rejection level over 24 dB with skirt selectivity. The cross coupling among these structures not only introduces filtering responses, but also contributes to broadening the passband of 24.25–29.5 GHz covering 5G n257/n258/n261 bands. The antenna performance is validated by equivalent circuits based on transmission line models, which reveals clearly the principles of filtering antenna step by step and provides guidelines for further designs. The proposed filtering antenna element is expanded to a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$4\times 4$ </tex-math></inline-formula> filtering antenna array with shunt-fed feeding networks. The spacing between elements is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$0.48~\lambda _{0}$ </tex-math></inline-formula> . The measured results demonstrate that the array performs good filtering characters including high stopband rejection, high selectivity, and wide upper stopband up to 40 GHz, where the antenna efficiency (considering radiations from all the directions) is less than 5%. In addition, the differential feeds provide symmetric radiation patterns with low cross-polarized counterparts. Compared with other reported works, the proposed filtering antenna/array has excellent performances of wideband, high stopband rejection and wide upper stopband for potential 5G mmW applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.