Abstract

Sources of broadband quantum correlated photons present a valuable resource for quantum metrology, sensing, and communication. Here, we report the generation of spectrally broadband correlated photons from frequency nondegenerate spontaneous parametric down-conversion in a custom-designed lithium niobate superlattice. The superlattice induces a nonlinear interference between the pump, signal and idler, resulting in an experimentally observed comb-like emission spanning 0.060 μm and 1.4 μm of spectral bandwidth at 0.647 μm and 3.0 μm wavelengths, respectively. While this broad mid-infrared bandwidth is attractive to quantum metrology and sensing due to the enablement of fast spectral multiplexing for data acquisition, the comb-like structure, achieved without an input frequency comb, offers targeted frequencies for quantum communication applications. In addition to useful technological applications, our concept offers an interesting analogy between optical diffraction in quantum and classical optics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call