Abstract

In order to advance towards more sustainable electronics generation, natural polymers with tailored dielectric response are essential. In this search, the combination of bio-based materials with active fillers in composite form, suppose one of the most viable alternatives. To achieve it, this work has explored the ability to control dielectric response of Silk Fibroin, a protein polymer by its combination with ceramic barium titanate (BaTiO3) nanoparticles. Both the effect of filler concentration (0, 5, 10, 20 and 40 wt%) and size (100 and 200 nm) has been studied in composites processed by easily scalable techniques. Samples with a homogeneous distribution of nanoparticles have been obtained. Dielectric relaxation processes assessed by broadband dielectric relaxation spectroscopy (BDS) in wide frequency (0.1 Hz–1 MHz) and temperature ranges (- 40 to 220 °C), revealed a dielectric constant increasing with filler content and decreasing with filler size, ranging from 4.4 for SF up to 142 for the SF/BaTiO3 composite with 40 wt %, at room temperature and 1 kHz. Two relaxations processes are observed, the β-relaxation and the conductivity relaxation, both with temperature-dependent behaviour. The activation energy of the conductivity process decreases with increasing nanoparticle content and decreasing size. A Maxwell-Wagner-Sillar process related to the interface between the silk fibroin matrix and the BaTiO3 nanoparticles was also identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.