Abstract

Cavity ringdown spectroscopy (CRDS) has been demonstrated using a broadband (20 nm) laser source and a two-dimensional clocked detector array. Absorption spectra of dilute samples (50–500 parts per trillion) of the nitrate radical, NO 3, have been obtained between 650 and 670 nm by monitoring simultaneously the time and wavelength resolved output of a ringdown cavity. The potential of broadband CRDS for making measurements on samples containing multiple absorbers (e.g., atmospheric samples) is shown by applying analysis methods from differential optical absorption spectroscopy to quantify the NO 3 concentration in the presence of nitrogen dioxide impurities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.