Abstract

A one-dimensional active broadband phased array based on microwave photonics that works in the Ku band is proposed to achieve a large instantaneous bandwidth. The phased array uses a feeding network based on microwave photonics to provide the true time delay and a wide operating bandwidth. The array is mainly composed of a broadband horn antenna, an RF transmitting/receiving module, an optical network module, and a temperature control module. The form of a horn was selected for the antenna unit, and it was fed through a waveguide to obtain a wide operating bandwidth. An optical fiber delay line that could realize the true time delay at different frequencies was adopted for the time-delay module of the optical network. To obtain a large time delay and small quantization error, a hybrid time-delay diagram utilizing electrical and optical time delays was used in the design. In addition, a temperature control module was added to the antenna system to enhance the stability of the photonic time-delay module. For verification, a prototype of the presented antenna system was designed, fabricated, and measured. The experimental results showed that the optical phased array antenna was able to scan ±20° from 12 GHz to 17 GHz, and the beam pointing did not appear to be offset over the wide operating bandwidth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call