Abstract

A cost-effective method for fabricating antireflective subwavelength structures on silicon carbide is demonstrated. The nanopatterning is performed in a 2-step process: aluminum deposition and reactive ion etching. The effect, of the deposited aluminum film thickness and the reactive ion etching conditions, on the average surface reflectance and nanostructure landscape have been investigated systematically. The average reflectance of silicon carbide surface is significantly suppressed from 25.4% to 0.05%, under the optimal experimental conditions, in the wavelength range of 390-784 nm. The presence of stochastic nanostructures also changes the wetting properties of silicon carbide surface from hydrophilic (47°) to hydrophobic (108°).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call