Abstract

A silver grating containing three grooves with different depths in one period was proposed as the back electrode for improving light absorption in organic solar cells. We found that the broadband absorption enhancement of the active layer covering the visible and near-infrared bands can be obtained due to the excitation of surface plasmon resonance and the multiple resonances of cavity mode. The integrated absorption efficiency of the proposed structure under TM polarization between 350 nm to 900 nm is 57.4%, with consideration of the weight of AM 1.5G solar spectrum, and is increased by 13.4% with respect to the equivalent planar device. Besides, the wide-angle absorption in proposed structure can be observed in the range from 0 to 50 degrees. These findings are of great importance for rationally designing composite nanostructures of metal gratings-based absorbers for sensing and photon-detecting applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.