Abstract

Metalens with broadband and high-efficiency focusing functionality is desired in various underwater acoustic applications such as sonar and oceanography. Here we design and demonstrate a metagrating-based lens consisting of spatially sparse and wavelength-scale meta-atoms with optimized structures. With the help of grating diffraction analysis and intelligent optimization algorithm, the reflective metalens enables broadband and high-numerical-aperture focusing for waterborne sound over a 40 kHz-bandwidth for working frequency at 200 kHz. Full-wave numerical simulations unambiguously verify a sharp and high-efficiency focusing of sound wave intensity, with the full width at half maximum at the focal spot being smaller than 0.5λ and thus beating the Rayleigh–Abbe diffraction limit. Our work not only provides an intelligent design paradigm of high-performance metalens, but also presents a potential solution for the development of planar acoustic devices for high-resolution applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.