Abstract

This paper presents an approach to achieve broadband absorption and temperature resistance using ceramic substrates. A specially formulated slurry suitable for additive manufacturing technology was developed to fabricate ceramic substrates with lattice structures. The lattice structure not only reduces the weight of the absorber but also facilitates the broadening of the absorption bandwidth. The experimental results demonstrate that the proposed structure exhibits absorption rates exceeding 88% within the frequency range of 19.9–30.41 GHz, with a relative absorption bandwidth of 41.8% under normal incidence. Furthermore, the absorber's performance was assessed under high temperatures of up to 200 ℃, revealing absorption spectra that closely match the initially measured spectrum. Additive-manufactured ceramic lattice structures present a promising avenue for designing multifunctional broadband microwave absorbers capable of withstanding elevated temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call