Abstract

Vivaldi antennas have broad applications in real practice due to the ultra wideband properties. However, their gain and directivity are relatively low. In this paper, a new method is presented to improve the gain and directivity of Vivaldi antennas in a broad band using inhomogeneous and anisotropic (IA) zero-index metamaterials (ZIM). ZIM have the ability to enhance the antenna directivity; anisotropic ZIM with only one component of the permittivity or permeability tensor approaching to zero can make impedance match to improve the radiation e-ciency; and IA-ZIM can broaden the frequency bandwidth. Single- and multiple-layered planar IA-ZIM have been analyzed, designed, and fabricated, which can be embedded into the original Vivaldi antenna smoothly and compactly. The IA- ZIM-based Vivaldi antennas have good features of high gain, high directivity, low return loss, and broad bandwidth. Compared to the original Vivaldi antenna, the measurement results show that the gain has been increased by 3dB and the half-power beam width has been decreased by 20 degrees with the re∞ection coe-cient less than i10dB from 9.5GHz to 12.5GHz after using IA-ZIM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.