Abstract

In this paper, we propose an all-metal Vivaldi antenna with pyramidal-shaped conductive wings for use in satellite signal intelligence applications. The inner metal Vivaldi antenna consists of radiating flares and a transition part between the feeder and the flares. The curvature of the inner flares is optimized, while the outer edges of the radiating flares are connected to the pyramidal-shaped wings to obtain a higher antenna gain over the entire operating frequency band. To verify the antenna’s feasibility, performance aspects such as the reflection coefficient, the radiation patterns, and the boresight gain are measured in a full anechoic chamber. The fractional bandwidth of the proposed antenna is 54%, while the boresight gain is greater than 7.3 dBi in the frequency range from 8 GHz to 12 GHz. To examine array performance aspects such as the total gain and beam steering, the proposed Vivaldi antenna is extended to a 4 × 1 linear array configuration. When the main beam is steered from 0° to 15°, the maximum gain is varied from 14.5 dBi to 13.7 dBi, while the side lobe level is decreased from 11.2 dB to 6.3 dB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call