Abstract

A broadband (35–1000 Hz) sound field formed by a point source in a shelf zone with inhomogeneous bottom sediment structure is studied using numerical modeling. The shelf depth is about 30 m and the maximum distance is 10 km. The transitional zone from the bottom with a sound speed of 1400 m/s to the bottom with a speed of 1600 m/s is chosen as the model inhomogeneity. The normal mode theory and wide-angle parabolic equations are used for sound field calculations. Numerical experiments show that the manifestation of horizontal refraction is noticeable at low frequencies (below 100 Hz). It leads to an increase in the amplitude of the low-frequency sound pulse propagating along the transitional zone by more than 10 dB in comparison with a similar waveguide with a homogeneous bottom. At frequencies above 100 Hz, the dominant effect is the mode coupling, causing the appearance of quasi-periodic oscillations of modal amplitude in the frequency domain. The conclusions from the simplified model are confirmed by calculations for the real structure of bottom sediments in the Kara Sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call