Abstract
The broadband absorption enhancement effect in ultrathin molybdenum disulfide (MoS2) films is investigated. It is achieved by inserting the MoS2 film between a dielectric film and a one-dimensional silver grating backed with a silver mirror. The broadband absorption enhancement in the visible region is achieved, which exhibits large integrated absorption and short-circuit current density for solar energy under normal incidence. The optical properties of the proposed absorber are found to be superior to those of a reference planar structure, which makes the proposed structure advantageous for practical photovoltaic application. Moreover, the integrated absorption and short-circuit current density can be maintained high for a wide range of incident angles. A qualitative understanding of such broadband absorption enhancement effect is examined by illustrating the electromagnetic field distribution at some selected wavelengths. The results pave the way for developing high-performance optoelectronic devices, such as solar cells, photodetectors, and modulators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.