Abstract

Quorum sensing (QS) is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives.

Highlights

  • Quorum sensing (QS) is a process of bacterial cell-cell communication that relies on the production, release, detection, and response to extracellular signaling molecules called autoinducers

  • We identify and characterize new classes of small molecules that interfere with quorum-sensingcontrol of virulence in multiple Vibrio species

  • Identification of molecules that activate QS in V. cholerae We are interested in identifying small molecules that activate

Read more

Summary

Introduction

Quorum sensing (QS) is a process of bacterial cell-cell communication that relies on the production, release, detection, and response to extracellular signaling molecules called autoinducers. QS allows groups of bacteria to synchronously alter behavior in response to changes in the population density and species composition of the vicinal community. QS controls collective behaviors including bioluminescence, sporulation, virulence factor production, and biofilm formation (Reviewed in [1,2]). Impairing virulence factor production or function has gained increasing attention as a method to control bacterial pathogenicity. The advantage of anti-virulence strategies over traditional antibiotics is presumed to be reduced pressure on bacteria to develop resistance [3,4,5]. Because QS controls virulence in many clinically relevant pathogens, disrupting QS is viewed as a promising possibility for this type of novel therapeutic development [6,7,8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call