Abstract

This study discusses the possibility of fabrication of textile nanocomposites with antimicrobial activity against antibiotics-resistant bacterial strains and yeast. Modification of cotton fabric with oxalic acid solutions of different concentrations provided free carboxyl groups for binding of Cu2+ -ions from copper (II) sulfate solution which were further reduced with sodium borohydride in alkaline solution. An increase in the concentration of applied oxalic acid resulted in larger amounts of free carboxyl groups on the cotton fibers, Cu2+ -ions uptake and total amounts of Cu-based nanoparticles after reduction. XPS and XRD analyses suggested that nanoparticles mainly consisted of CuO with fractions of Cu2O. Fabricated textile nanocomposites ensured maximum reduction of Gram-negative E. coli ATCC 25922, E. coli NCTC 13846, E. coli ATCC BAA-2469, K. pneumoniae ATCC-BAA 2146 and P. aeruginosa ATCC 27853, Gram-positive bacteria S. aureus ATCC 25923 and S. aureus ATCC 43300 and yeast C. albicans ATCC 24433. Additionally, controlled release of Cu2+ -ions from fabrics into the physiological saline solution was obtained within 24 hours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.