Abstract

The detection of broad wavelengths from the near-ultraviolet to near-infrared regime using functional semiconductor nanostructures is of great importance in either fundamental research or technological application. In this work, we report high-performance optoelectronic nanodevices based on a single Te nanobelt grown by molecular beam epitaxy. The photodetector demonstrates a fast photoresponse time (a rise time of 510 μs and a decay time of 300 μs), a high photoresponsivity of 254.2 A W-1, an external quantum efficiency of 8.6 × 104%, a large detectivity of 8.3 × 108 Jones, on/off ratio of 3 orders, broadband response from the near-ultraviolet to near-infrared region, and robust photocurrent stability and reproducibility. The photodetector with superior performances based on the individual one-dimensional Te nanobelt consequently shows great promise for further optoelectronic device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.