Abstract
The broad-specificity amino acid racemase (Bsar) from Pseudomonas putida catalyzes the racemization of various amino acids, offering a flexible and feasible platform to develop a new non-antibiotic selectable marker system for plant transformation. In the present study, we demonstrated that a Bsar variant, Bsar-R174K, that is useful as a selectable marker gene in Arabidopsis and rice that were susceptible to l-lysine and D-alanine. The introduction of wild-type Bsar, Bsar-R174K or Bsar-R174A into E. coli lysine or asparagine auxotrophs was able to rescue the growth of these microorganisms in minimal media supplemented with selectable amino acid enantiomers. The transformation of Arabidopsis with Bsar or Bsar variants based on d-alanine selection revealed that Bsar-R174K had the greatest efficiency (2.40%), superior to kanamycin selection-based transformation (1.10%). Whereas, l-lysine-based selection exhibited lower efficiency for Bsar-R174K (0.17%). The progenies of selected Bsar-R174K transgenic Arabidopsis revealed normal growth properties. In addition, Bsar-R174K transgenic rice was obtained on l-lysine medium with an efficiency of 0.9%, and the progenies of the transgenic rice revealed morphologically normal phenotypes comparable with their wild-type counterparts. This study presents the first report of broad range amino acid racemase Bsar-R174K as a non-antibiotic selectable marker system applied in transgenic plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.