Abstract
Tunable wavelength conversion of a 10 Gb/s signal over a broad wavelength range of about 90 nm is achieved by using a super structure grating distributed Bragg reflector laser. The extinction ratio dependence of converted signal light on input signal light power and bias current to the laser active region is discussed. The extinction ratio becomes large when the input signal light power increases and the bias current decreases. Bit error rate measurements show that error-free, penalty-free wavelength conversion is achieved when the extinction ratio is large (12.5 dB) and that the bit rate which error-free wavelength conversion is possible increases as the input signal light power increases. Twenty Gb/s signal wavelength conversion is also demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.