Abstract

Broad omnidirectional band gaps in a three-dimensional phononic crystal consisting of a face-centered cubic array of spherical air voids connected by cylindrical conduits in solid background are numerically and experimentally demonstrated. With a low material filling fraction of 37.7%, the first bandgap covers 3.1-13.6 kHz frequency range with 126.1% gap-over-midgap ratio. Finite-element method is employed in band structure and numerical transmission analyses. Omnidirectional band gaps are observed in only two-period thick slabs in the 100, 110, and 111 orientations. Experimental transmission characteristics are in good agreement with numerical data. The phononic crystal can be employed in low-frequency sound proofing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.