Abstract

In the mammalian cochlea, each longitudinal position of the basilar membrane (BM) has a nonlinear vibratory response in a limited frequency range around the location-dependent frequency of maximum response, known as the best frequency (BF). This nonlinear response arises from the electromechanical feedback from outer hair cells (OHCs). However, recent in vivo measurements have demonstrated that the mechanical response of other organ of Corti (OoC) structures, such as the reticular lamina (RL), and the electrical response of OHCs (measured in the local cochlear microphonic [LCM]) are nonlinear even at frequencies significantly below BF. In this work, a physiologically motivated model of the gerbil cochlea is used to demonstrate that the source of this discrepancy between the frequency range of the BM, RL, and LCM nonlinearities is greater compliance in the structures at the top of the OHCs. The predicted responses of the BM, RL, and LCM to pure tone and two-tone stimuli are shown to be in line with experimental evidence. Simulations then demonstrate that the sub-BF nonlinearity in the RL requires the structures at the top of the OHCs to be significantly more compliant than the BM. This same condition is also necessary for “optimal” gain near BF, i.e., high amplification that is in line with the experiment. This demonstrates that the conditions for OHCs to operate optimally at BF inevitably yield nonlinearity of the RL response over a broad frequency range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call