Abstract

A detailed analysis of a long XMM-Newton observation of the Narrow Line Seyfert 1 galaxy 1H0707-495 is presented, including spectral fitting, spectral variability and timing studies. The two main features in the spectrum are the drop at ~ 7 keV and a complex excess below 1 keV. These are well described by two broad, K and L, iron lines. Alternative models based on absorption, although they may fit the high energy drop, cannot account for the 1 keV complexity and the spectrum as a whole. Spectral variability shows that the spectrum is composed of at least two components, which are interpreted as a power-law dominating between 1-4 keV, and a reflection component outside this range. The high count rate at the iron L energies has enabled us to measure a significant soft lag of ~ 30 s between 0.3-1 and 1-4 keV, meaning that the direct hard emission leads the reflected emissions. We interpret the lag as a reverberation signal originating within a few gravitational radii of the black hole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.