Abstract

Thin-film transmission lines are experimentally characterized in the frequency range from 10 MHz to 110 GHz. Scattering (S-) parameters for several test lines are measured. Then, two important transmission line parameters (i.e., the propagation constant and characteristic impedance) are determined in the measured frequency range. The resonances, which are inevitable in a practical experimental environment, are carefully eliminated by de-embedding parasitic effects and by determining the frequency-variant dielectric permittivity based on the Debye model. Based on the experimental work, we showed that the conventional skin-effect model may not be accurate for high-frequencies. Further, the 3-dimensional (3D) numerical field solver does not reflect the radiation loss at high-frequency. Finally, in the millimeter (mm)-wave region, all the three loss mechanisms due to the skin-effect, dielectric polarization, and electromagnetic radiation have to be taken into account.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call