Abstract

Constraining the controlling factors of fault rupture is fundamentally important. Fluids influence earthquake locations and magnitudes, although the exact pathways through the lithosphere are not well-known. Ocean transform faults are ideal for studying faults and fluid pathways given their relative simplicity. We analyse seismicity recorded by the Passive Imaging of the Lithosphere-Asthenosphere Boundary (PI-LAB) experiment, centred around the Chain Fracture Zone. We find earthquakes beneath morphological transpressional features occur deeper than the brittle-ductile transition predicted by simple thermal models, but elsewhere occur shallower. These features are characterised by multiple parallel fault segments and step overs, higher proportions of smaller events, gaps in large historical earthquakes, and seismic velocity structures consistent with hydrothermal alteration. Therefore, broader fault damage zones preferentially facilitate fluid transport. This cools the mantle and reduces the potential for large earthquakes at localized barriers that divide the transform into shorter asperity regions, limiting earthquake magnitudes on the transform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.