Abstract

ABSTRACTBiological rapid sand filtration is a commonly employed method for the removal of organic and inorganic impurities in water which relies on the degradative properties of microorganisms for the removal of diverse contaminants, but their bioremediation capabilities vary greatly across waterworks. Bioaugmentation efforts with degradation-proficient bacteria have proven difficult due to the inability of the exogenous microbes to stably colonize the sand filters. Plasmids are extrachromosomal DNA elements that can often transfer between bacteria and facilitate the flow of genetic information across microbiomes, yet their ability to spread within rapid sand filters has remained unknown. Here, we examine the permissiveness of rapid sand filter communities toward four environmentally transmissible plasmids, RP4, RSF1010, pKJK5, and TOL (pWWO), using a dual-fluorescence bioreporter platform combined with fluorescence-activated cell sorting (FACS) and 16S rRNA gene amplicon sequencing. Our results reveal that plasmids can transfer at high frequencies and across distantly related taxa from rapid sand filter communities, emphasizing their potential suitability for introducing bioremediation determinants in the microbiomes of underperforming water purification plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.