Abstract

Functional surfaces with broad-band ultralow optical reflection have many potential applications in areas like national defense and energy conversion. For efficient, high-quality manufacturing of material surfaces with antireflection features, a novel machining method for multiscale micro-nano structures is proposed. This method can enable the collaborative manufacturing of both microstructures via laser ablation and micro-nano structures with high porosity via in situ deposition, and it can simplify the fabrication process of multiscale micro-nano structures. As a result, substantially improved antireflection properties of the treated material surface can be realized by optimizing light trapping of the microstructures and enhancing the effective medium effect for the micro-nano structures with high porosity. In ultraviolet-visible-near-infrared regions, average reflectances, as low as 2.21 and 3.33%, are achieved for Si and Cu surfaces, respectively. Furthermore, the antireflection effect of the treated surface can also be extended to the mid-infrared wavelength range, where the average reflectances for the Si and Cu surfaces decrease to 5.28 and 5.18%, respectively. This novel collaborative manufacturing method is both simple and adaptable for different materials, which opens new doors for the preparation of broad-band ultra-low-reflectivity materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call