Abstract

ABSTRACTOptical absorption efficiency, an important metric for sensing, radiometric and energy harvesting applications, has been studied theoretically and experimentally in porous, ordered nanostructures, including multi-walled- (MW) carbon nanotubes (CNTs) and single-walled- (SW) CNTs. We have characterized the absorption efficiencies in the 350 nm -7000 nm wavelength range of vertically aligned MWCNT arrays with high site densities synthesized directly on metallic substrates using a plasma-enhanced (PE)- chemical vapor deposition (CVD) process. Our ultra-thin absorbers exhibit a reflectance as low as ∼ 0.02 % (100 X lower than the benchmark). Such high efficiency absorbers are particularly attractive for radiometry, as well as energy harnessing applications. This work increases the portfolio of materials that can be integrated with such absorbers due to the potential for reduced synthesis temperatures arising from a plasma process. Optical modeling calculations were conducted that enabled a determination of the extinction coefficient in the films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.