Abstract
In recent years multi-spectral imagery is steadily growing popularity. Multi-channel imaging which includes short-wave infrared (SWIR), mid-wave infrared (MWIR) and long-wave infrared (LWIR) systems are useful for threat detection, tracking, thermal signature detection and terrain analysis. In this paper, a broad band antireflection coating on ZnS substrate, simultaneously effective in SWIR, MWIR and LWIR is reported. The coating design approach was evolved using gradient index concept, where refractive index varies gradually from incident media to the ZnS ( n = 2.2) substrate. The gradient index profile depicted by 4th degree polynomial n( t) = −0.45 t 4 + 1.9 t 3 − 2.7 t 2 + 1.9 t + 1,where n( t) is the refractive index at the distance t from ambient, and t is the thickness in micron. The profile is best approximated by eight discrete step index layers, whose first layer is thorium fluoride ( n = 1.42; lowest index stable material available). Other seven layers are replaced by two equivalent layer system of real materials thorium fluoride and zinc sulphide. Final 15 layers design is deposited by e-beam evaporation. The maximum layer thickness was restricted around 0.7 μm to overcome the stress problem in the film. This 15 layers coating has shown average transmission 95% in 0.9–10.5 μm spectral band having peak 99% at 9 μm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.