Abstract

Advanced oxidation processes (AOPs) are important technologies for aqueous organics removal. Despite organic pollutants can be degraded via AOPs generally, high mineralization of them is hard to achieve. Herein, we synthesized a manganese oxide nanomaterial (H2-OMS-2) with abundant Brønsted-acid sites via ion-exchange of cryptomelane-type MnO2 (OMS-2), and tested its catalytic performance for the degradation of phthalate esters via peroxymonosulfate (PMS) activation. About 99% of dimethyl phthalate (DMP) at a concentration of 20 mg/L could be degraded within 90 min and 82% of it could be mineralized within 180 min over 0.6 g/L of catalyst and 1.8 g/L of PMS. The catalyst could activate PMS to generate SO4−˙ and ·OH as the dominant reactive oxygen species to reach complete degradation of DMP. Especially, the higher TOC removal rate was obtained due to the rich Brønsted-acid sites and surface oxygen vacancies on the catalyst. Kinetics and mechanism study showed that MnII/MnIII might work as the active sites during the catalytic process with a lower reaction energy barrier of 55.61 kJ/mol. Furthermore, the catalyst could be reused for many times through the regeneration of the catalytic ability. The degradation and TOC removal efficiencies were still above 98% and 65% after seven consecutive cycles, respectively. Finally, H2-OMS-2-catalyzed AOPs significantly reduced the organismal developmental toxicity of the DMP wastewater through the investigation of zebrafish model system. The present work, for the first time, provides an idea for promoting the oxidative degradation and mineralization efficiencies of aqueous organic pollutants by surface acid-modification on the catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call