Abstract
Evolutionary mutations in primate-specific genes drove primate cortex expansion. However, whether conserved genes with previously unidentified functions also play a key role in primate brain expansion remains unknown. Here, we focus on BRN2 (POU3F2), a gene encoding a neural transcription factor commonly expressed in both primates and mice. Compared to the limited effects on mouse brain development, BRN2 biallelic knockout in cynomolgus monkeys (Macaca fascicularis) is lethal before midgestation. Histology analysis and single-cell transcriptome show that BRN2 deficiency decreases RGC expansion, induces precocious differentiation, and alters the trajectory of neurogenesis in the telencephalon. BRN2, serving as an upstream factor, controls specification and differentiation of ganglionic eminences. In addition, we identified the conserved function of BRN2 in cynomolgus monkeys to human RGCs. BRN2 may function by directly regulating SOX2 and STAT3 and maintaining HOPX. Our findings reveal a previously unknown mechanism that BRN2, a conserved gene, drives early primate telencephalon development by gaining novel mechanistic functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.