Abstract

The transcriptional regulator BrlR is a member of the MerR family of multidrug transport activators that contributes to the high-level drug tolerance of Pseudomonas aeruginosa biofilms. While MerR regulators are known to activate both the expression of multidrug efflux pump genes and their own transcription upon inducer binding, little is known about BrlR activation. We demonstrate using promoter reporter strains, in vivo and in vitro DNA-binding assays combined with 5'RACE, that BrlR binds to its own promoter, likely via a MerR-like palindromic sequence. Unlike known MerR multidrug transport activators, BrlR and brlR expression are not activated by multidrug transporter substrates. Instead, BrlR-DNA binding was enhanced by the secondary messenger c-di-GMP. In addition to enhanced BrlR-DNA binding, c-di-GMP levels contributed to PbrlR promoter activity in initial attached cells with elevated c-di-GMP levels correlating with increased expression of brlR. While not harbouring amino acid motifs resembling previously defined c-di-GMP-binding domains, BrlR was found to bind c-di-GMP in vitro at a ratio of one c-di-GMP per two BrlR. Cross-linking assays confirmed dimer formation to be enhanced in the presence of elevated c-di-GMP levels. Our findings demonstrate BrlR to be an unusual MerR-family member in that BrlR function and expression require the secondary messenger c-di-GMP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call