Abstract

Shale reservoirs have gained the attention of many in recent years due to their potential as a major gas resource. Production from this kind of formation, however, requires an accurate estimation of brittleness and employments of hydraulic fracturing. There have been many studies as to how brittleness can be estimated, but few research works were carried out so far indicating how brittleness indices vary in gas shale formations. The aim of this paper is to evaluate the variation of brittleness in one of the gas shale reservoirs located in the north Perth Basin of Australia. The results obtained indicated that the lower part of the Carynginia shale should be selected for a hydraulic fracturing job due to a high brittleness index, although a careful analysis of Total Organic Content (TOC) might be required before initiating any plans. The mineralogical report and interpretations revealed that the space created by cross-plotting the elastic parameters is able to identify dominant minerals contributing into brittleness. Performing a series of true triaxial tests, which are capable of simulating the real field condition by applying three independent principal stresses, implied that as the stress anisotropy increases, a transition takes place from brittle towards the ductile behaviours. However, when this anisotropy becomes significant, samples regain their strength. This study, therefore, recommends more studies to get a practical conclusion on brittleness under true triaxial conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.