Abstract

Au–Al intermetallic compounds (IMCs) were conventionally regarded as damage sources within wire bonding interfaces. Among the Au–Al IMCs system, Au2Al and AuAl2 IMCs were commonly observed after long-term service. Here, the intrinsic mechanical properties of Au2Al and AuAl2 IMCs were investigated by in-situ bending tests. The results clearly revealed that the transition from brittle to ductile facture behavior was determined by the atomic ratio of Au and Al elements, while Al-rich Au–Al IMC exhibits higher bending strength than that of Au-rich Au–Al IMC. The Al-rich Au–Al IMC such as AuAl2 indeed showed brittle fracture behavior, in which cracks propagated through the grain boundaries. In contrast, the Au-rich Au–Al IMC such as Au2Al appeared to be quite ductile and crack resistant, and its plastic deformation was undertaken by slip bands. This work suggested that not all Au–Al IMCs cause brittleness and lead to damages, only Al-rich IMCs should be avoided at wire bonding interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.