Abstract

The fracture process that determines the temperature dependence of toughness at the ductile-brittle transition was investigated for low carbon steels. It was revealed that the resistance against the stretch zone at the crack tip and the stable crack extensions is temperature independent while it depends on the carbon content. Applicability of elastic-plastic analyses of the crack tip fields was examined in terms of the relationship between J integral value normalized by the flow stress and crack opening displacement. Temperature dependence of toughness is determined primarily by the brittle fracture initiation. Locations of the initiation sites were revealed to coincide with the maximum stress triaxiality rather than the maximum tensile stress. It was suggested that the brittle fracture is caused by the deformation-induced initiation and triaxial stress assisted growth of an incipient crack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call