Abstract

Crack paths prediction is one of the most challenging of fracture mechanics. The difficulty in this seek is how to obtain numerical models able of predicting unknown crack paths. One of these models is called the phase-field approach. It represents cracks by means of an additional continuous field variable. This model approximates a sharp crack with a diffuse crack phase-field where a characteristic length regularizes the crack topology and a crack energy density describes the energy dissipated in order to break a brittle piece. This method avoids some of the drawbacks of a sharp interface description of cracks. The phase-field model for brittle fracture assumes quasi-static loading conditions. However, dynamic effects have a great impact on the crack growth in many practical applications. Therefore, this investigation presents an extension of the quasi-static phase-field model for the fracture to the dynamic case. Experiment tests will be presented in this work in order to study the efficiency and the robustly of phase-field approach for modeling brittle fracture and capturing complex crack topologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call