Abstract
This paper reports a new incidence of brittle failure by lamellar splitting in a large-scale tubular X-joint and examines the possible causes of this failure. The X-joint, with multiple pre-existing fatigue cracks at the weld toe along the brace-to-chord intersection, experiences brittle failure during a monotonic in-plane bending test. Post-test sectioning of the material around the brace-to-chord intersection reveals lamellar splitting in the mid-thickness of the chord wall instead of rapid extensions of the fatigue cracks in the through-thickness direction. The lamellar splitting observed in this test differs from the conventional lamellar tearing both in its appearance and in its causes. The elongated nonmetallic inclusions concentrated at the mid-thickness, as revealed by the microscopic scanning, leads to delamination cracking near the mid-thickness and subsequently to the brittle failure of the joint. The material requirements in prevailing engineering codes do not suffice to prohibit the lamellar splitting failure observed in this study, which may cause catastrophic failures in engineering structures designed with insufficient redundancy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.