Abstract

Efforts to address anthropogenic global climate change (AGCC) require public understanding of Earth and climate science. To meet this need, educational reforms and prominent scientists have called for instructional approaches that teach students how climate scientists examine AGCC. Yet, only a few educational studies have reported clear empirical results on what instructional approaches and climate education technologies best accomplish this goal. This manuscript presents detailed analysis and statistically significant results on the educational impact pre to post of students learning to use a National Aeronautics and Space Administration (NASA) global climate model (GCM). This series of case studies demonstrates that differing instructional approaches and climate education technologies result in differing levels of understanding of AGCC and ability to engage with policies addressing it. Students who learned the scientific process of climate modeling scored significantly higher pre to post on exams (quantitatively) and gained more complete conceptual understandings of the issue (qualitatively). Yet, teaching students to conduct research with complex technology can be difficult. This study also found lecture-based learning better improved recall of facts about GCMs tested by multiple-choice questions. Our findings indicate what educational systems and related technologies might provide the public with the conceptual understandings necessary to engage in the political debate over AGCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call