Abstract

The brine-freeze-thaw durability (defined as the durability under freeze-thaw cycles in Qinghai salt lake brine) of concrete (ordinary Portland cement concrete (OPC), high performance concrete (HPC-a), high performance concrete with steel fiber (HPC-b), and high performance concrete with high Young’s modulus polyethylene fiber (HPC-c)) was systematically investigated by the relative dynamic elastic modulus, the relative mass, the appearance, the scanning electron microscopy, and the X-ray diffraction. In addition, the low-temperature physical and chemical corrosion mechanism and a crack density model after the modified relative dynamic elastic modulus being taken into consideration were proposed. The results show that the deterioration of OPC is the severest, followed by HPC-a, HPC-c and HPC-b. The admixture or the fiber is mixed into concrete, which can improve the brine-freeze-thaw durability of concrete. The critical mass growth of the failure of concrete is 3.7%. The cause of the deterioration of concrete under the brine-freeze-thaw cycles is physical and chemical corrosion, not freezing and thawing. The crack density model can effectively describe the deterioration evolution of concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call