Abstract

Brillouin spectrometers, used for characterizing material mechanical properties, traditionally employ etalons such as Fabry-Pérot interferometers and virtually imaged phased arrays (VIPA) that use spatial dispersion of the spectrum for measurement. Here, we introduce what we believe to be a novel approach to Brillouin spectroscopy using hot atomic vapors. Using laser induced circular dichroism of the rubidium D2 line in a ladder-type configuration, we developed a narrow-band monochromator for Brillouin analysis. Unlike etalon-based spectrometers, atomic line monochromators operate in free-space, facilitating Brillouin spectroscopy integration with microscopy instruments. We report the transmission and spectral resolution performances of the spectrometer and demonstrate Brillouin spectra measurements in liquids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.