Abstract
The Bloch band theory and Brillouin zone (BZ) that characterize wave-like behaviors in periodic mediums are two cornerstones of contemporary physics, ranging from condensed matter to topological physics. Recent theoretical breakthrough revealed that, under the projective symmetry algebra enforced by artificial gauge fields, the usual two-dimensional (2D) BZ (orientable Brillouin two-torus) can be fundamentally modified to a non-orientable Brillouin Klein bottle with radically distinct manifold topology. However, the physical consequence of artificial gauge fields on the more general three-dimensional (3D) BZ (orientable Brillouin three-torus) was so far missing. Here, we theoretically discovered and experimentally observed that the fundamental domain and topology of the usual 3D BZ can be reduced to a non-orientable Brillouin Klein space or an orientable Brillouin half-turn space in a 3D acoustic crystal with artificial gauge fields. We experimentally identify peculiar 3D momentum-space non-symmorphic screw rotation and glide reflection symmetries in the measured band structures. Moreover, we experimentally demonstrate a novel stacked weak Klein bottle insulator featuring a nonzero Z2 topological invariant and self-collimated topological surface states at two opposite surfaces related by a nonlocal twist, radically distinct from all previous 3D topological insulators. Our discovery not only fundamentally modifies the fundamental domain and topology of 3D BZ, but also opens the door towards a wealth of previously overlooked momentum-space multidimensional manifold topologies and novel gauge-symmetry-enriched topological physics and robust acoustic wave manipulations beyond the existing paradigms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.