Abstract

Brillouin Optical Time-Domain Analysis (BOTDA) is a widely-used distributed optical fiber sensing technology employing pulse-modulated pump waves for local information retrieval of the Brillouin gain or loss spectra. The spatial resolution of BOTDA systems is intrinsically linked to pulse duration, so high-resolution measurements demand high electronic bandwidths inversely proportional to the resolution. This paper introduces Brillouin Expanded Time-Domain Analysis (BETDA) as a modified BOTDA system, simultaneously achieving high spatial resolution and low detection bandwidth. Utilizing two optical frequency combs (OFCs) with different frequency intervals as pump and probe, local Brillouin gain spectra are recorded by their spectral beating traces in an expanded time domain. A 2-cm-long hotspot located in a 230 m single-mode fiber is successfully measured in the time domain with a detection bandwidth of less than 100 kHz using dual OFCs with tailored spectral phase, line spacing, and bandwidth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.