Abstract

Semiconductor quantum dots (QDs) have recently caused a stir as a promising and powerful lighting material applied in real-time fluorescence detection, display, and imaging. Photonic nanostructures are well suited for enhancing photoluminescence (PL) due to their ability to tailor the electromagnetic field, which raises both radiative and nonradiative decay rate of QDs nearby. However, several proposed structures with a complicated manufacturing process or low PL enhancement hinder their application and commercialization. Here, we present two kinds of dual-resonance gratings to effectively improve PL enhancement and propose a facile fabrication method based on holographic lithography. A maximum of 220-fold PL enhancement from CdSe/CdS/ZnS QDs are realized on 1D Al-coated photoresist (PR) gratings, where dual resonance bands are excited to simultaneously overlap the absorption and emission bands of QDs, much larger than those of some reported structures. Giant PL enhancement realized by cost-effective method further suggests the potential of better developing the nanostructure to QD-based optical and optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.