Abstract

An all-optical scheme is proposed for studying laser plasma based incoherent photon emission from inverse Compton scattering in the quantum electrodynamic regime. A theoretical model is presented to explain the coupling effects among radiation reaction trapping, the self-generated magnetic field and the spiral attractor in phase space, which guarantees the transfer of energy and angular momentum from electromagnetic fields to particles. Taking advantage of a prospective ∼ 1023 W cm−2 laser facility, 3D particle-in-cell simulations show a gamma-ray flash with unprecedented multi-petawatt power and brightness of 1.7 × 1023 photons s−1 mm−2 mrad−2/0.1% bandwidth (at 1 GeV). These results bode well for new research directions in particle physics and laboratory astrophysics exploring laser plasma interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.