Abstract

In the Compton backscattering of laser light from a high-energy electron beam, the scattered photons are, as is well known, much harder than the incident photons. In connection with the inverse Compton effect, the spectral brightness, the brilliance of the backscattered radiation is theoretically investigated. For the brilliance B [photons/(sec × mm2 × sr × 0.1% bandwidth)] of the scattered radiation a defining relation is given. Then, the intensity I0 and the wavelength λ 0 of the incident laser light are assumed such that the intensity parameter η is sufficiently smaller than 1, so that with regard to the scattering process, multiphoton effects need not be considered, and the backscattered photon energy hν and the differential cross section dσ/dω approximately do not depend on η. In this case, the brilliance B linearly scales with I0. Furthermore, it is assumed that the primary electron and the incident laser photon are counterpropagating along a straight line, the head-on incidence of the laser photon. On these assumptions, for the brilliance B of the backscattered radiation, B depending on the back-scattered photon energy hν, an explicit formula is derived; from it, by approximations, a shorter formula for B is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.